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Asymptotic expansions are given for the 4£3 and 41J3 orthogonal polynomials
which generalize the classical orthogonal polynomials. The expansions are applied
to determine the complex sets of convergence of series of these polynomials. The
proof of the main asymptotic expansion uses a convexity argument which is
especially well suited to estimating certain hypergeometric series and their integral
analogs. As an alternative approach to the asymptotics, a uniform version of
Darboux's method is described. !:' 1991 Academic Press, Inc,

1. I"ITRODCCTION

The polynomials

Pn(Z2) = (a + b)n (a + C)n (a + d)n

[
-n, n+a+b+c+d-l, a+iz, a-iz; IJ

x 4F3
a + b, a + c, a + d

(polynomials of degree n in the variable Z2) generalize the classical
orthogonal polynomials as well as the 6 - j symbols of angular momentum.
They satisfy various orthogonality relations, depending on the values of the
parameters a, b, c, d [10].

If a, b, c, d are all positive except for complex conjugate pairs with
positive real parts, then Pn(x) is real for real x, and

(1.2)

with

(r(a+b+C+d)Sh(2rr~) )

w(x) = IF(a + i~) r(b + i~) l(c + i J~) l(d + i ,,/~W
2rr 2l(a + b) r(a + c) r(a + d) l(b + c) l(b + d) r(c + d)
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and

ASY~PTOTICSFOR POLY~OMIALS

h = n !(n + a + b + c + d - l)" fa + b)" (a + c)" ... (c + d)"

" (a+b+c+dh" .
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If a is negative while a + b, a + c, a + d have positive reai part, then the
orthogonality relation (1.2) must be modified by the addition of the fini.~e

sum

(j I PkPm(-(a+kf)p,,(-(a+k)2)
k"O

a+k<O

to the left-hand side. Here

i(b - a) l(c - a) l(d - a) l(a + b + c + d)
0=

i(b + c) l(b + d) 1(c + d) l( -2a)

and

(2ah (a + l)k (a + bh (a + ch (a + d h
Pk = k I ( ). b l) ( 1\ ( . l". ak(a- + k a-c+ Ik a-a+ ik

(1.3 )

There is also a purely discrete orthogonality relation. If a + b = - N, ;V a
nonnegative integer, then

x
o I PkPm(-(a+kf)p"(-(a,k)2)=t5m,,,hn , (i.4)
k~O

where

(J= (a-c+ 1)s (a-d+ l)s/(2a+ lh· (l-c-d)",

(Pk and hn as above).
In Section 2, we derive asymptotic expansions for Fn(:;;2) as n -> x.

These contain, for example, the following estimates. For Z2 ¢
{- m 2/4 : mE Z}

_2) (a-iz)n (b-iz)n (c-iz)n (d-iz)n [1' (-2 ]
Fn('" = . • -r 0 n )

( -2IZ)n

(a+iz)n(b+iz)n(c+iz)n(d+iz)nrl n( -2)J+ . L +~ n .
(2IZ)n

Accordingly, if X> 0 and the parameters satisfy the conditions for the real
orthogonality relation (1.2), then

Fn(x) = c,. [2IA(i yI;;:)1 cos(2 fi In n - arg AU ,,/~))+ O(n- i
)],
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A(z) = 1(2z)j1(a + z) 1(b + z) F(c + z) F(d + z). (1.5)

IfImz>O and A(-iz)#O, then

Pn(Z2) '" A( - iz) en -2ie

(even if Z2= -m2j4). If Imz>O, A(-iz)=O, and A(iz)#O (this case
corresponds to a mass point in (1.3»), then

Pn(Z2) '" A(iz) Cnn 2iZ

except that the right hand side must be doubled if Z2 = -m2/4. If A( - iz) =
A(iz) = 0, then Pn(z2) is zero for all n sufficiently large. This case
corresponds to a mass point in the discrete orthogonality relation (1.4).

In the cases where {Pn(x)} is orthogonal with respect to a positive
measure, the asymptotic formulas for the orthonormal polynomials
obtained by rescaling Pn(x) have Cn replaced by n- L2 times a factor
depending only on the parameters a, b, c, d. The standardization used here
has the advantage of generality-it makes Pn(z2) an entire (actually, a
polynomial) function of the parameters.

The asymptotic expansions allow us to compare (in Section 3) any series
L anPn(z2) with a Dirichlet series L bnn- 2iZ and conclude that the sets of
convergence are parabolic regions (in the z2-plane ) along with (possibly)
finitely many other points corresponding to point masses in the
orthogonality relations.

The polynomials Pn (Z2) are a limiting case of the polynomials [1]

Pn((z+z-1)j2)

- -n' b' ) ( . ) (d' ) d. [q-n,qn-labCd,aZ,ajz;q,q]
- a (a, q n ac, q n a ,q n 4'1'3 b .

a ,ac, ad
(1.6 )

Corresponding results for these polynomials are given in Section 4. Some
of these results made a more timely appearance in [6].

2. ASYMPTOTIC EXPAKSIO:,>/S

The polynomials Pn(z2) have many other hypergeometric representa­
tions, obtainable by applying (and iterating) Whipple's identities [2,
pp. 55,56]
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:a,b,c,-n; 1] (e-a)n(f-a)"
4F, I = __-,-,--,,--_-c.:.

J L d,e,f (e)n(f)"

F [ a, d - b, d - c, -17: 1 -I
x 4 3 d, d + e - b - c, d + f - b - c~

(1I-b)" (u-c)"

(u)" (u-b-c)"

x,F l,U-1,(U+1)/2,u-e,U-f,b,c,-17;lJ' (2.1)
! 6 (u-1)/2, e,/, u-b, u-c, u+n

valid when d + e +f = a + b + c - n + 1 and u = e +f - a. Two such
representations are used in this section. One is

F 12iZ - n, iz - n/2 + 1, a + iz, b + iz, c + iz, d + iz, -n; 1-:
x 7 6 . " '," 2' !

_ IZ - n/ 2, lZ - n + 1 - a, ..., lZ - 11 -+- 1 - a, 1 + lZ J

" 2iz-n + 2k
=n! L UkUZ)U"_k(-iz)· ....

k-O L~

with

and

Thus the 4F3 polynomials are 7F6 polynomials as well. Note that they also
have been found to be denominators in Pade approximants to a 7F6 [5].

The other representation is

[
-n,-c-d+n+1,a+iz,b+iz;ll

x 4F3 . .;
a+b,-c+lz-n+ 1,-d+lz-n+ lJ

=(a+b)"(c+d),,n!

x f (a + iz)db + iZ)k (e - iZ)n_d d - iZ)n_k.

k~O (a+b)kk~ (c+d),,_dn-k)!
(2.3 )
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This formula immediately gives a generating function

(2.4 )

Our main result is that the sum (2.2) has the character of an asymptotic
expansion, with the terms near the ends being the most significant. More
precisely,

THEOREM. If z f/= {im/2 : mE 7L} then as n~ 00,

r- 1 2iz - n + 2k
Pn(Z2) = n! L Uk(iZ) Un-k( -iz) .

k ~O 21z

+ nAiz) A( -iz) CnO(n-2iz-2r)

s - 1 2iz + n - 2k
+n! L un_k(iZ)uk(-iz) .

k-O 2u

(2.5)

with Cn, A(z), nk(z), and uk(z) as in (1.5) and (2.2). The error estimates are
uniform for a, b, c, d, and z in compact sets (avoiding points z = im/2).

Proof The O-estimates in the following are intended as uniform for
(a, b, c, d, z) belonging to any compact set Fin C 5 avoiding points where
Z= im/2.

When n is large, the difference between Pn (Z2) and the approximation in
(2.5) is (according to (2.2»

n- s 2iz - n + 2k
£r..(n)=n! L Uk(iZ)Un_k(-iz)· . .

. k-r 2u

Now, at least if rand s are large enough (depending on F), we may write

n-s

£r,5(n) = 2izA(iz) A( -iz) n! L v:v;;_k(n - 2iz - 2k)
k-r

n-s

= A(iz) A( -iz) n! O(n)· L IV:V;;_kl
k=r

as n ~ oc, with

~:f = F(a ± iz + k)· .. r(d±iz + k)/k! r(l ± 2iz +k).
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To make further progress, we need to verify that, for large values o~'

k, :rf I is a log convex function of k. With Ll denoting the forward
difference in the variable k, we calculate

I
I (a ± iz + k + 1) ... (d ± iz + k + 1)( 1 -t- k)( 1::: 2iz + k) i

-n I- i (a±iz+k) .. ·(d±iz+k)(2+k)(2:=2iz+k) !

= 2k- 1 + 0(k- 2
) > 0

for k large (depending on F). Now, from log convexity of Irk"! follows log
convexity of Ir:r,-;-_kl for r~k~n-s, at least when r,5 are both large.
n;;:'r+5.

By convexity, the mean value

1 n-s

----" 'r+"- In-s-r+l L I k"n·-k:
k=r

is less than the mean of the first and last terms.
This gives

as n --> x.. Using Stirling's approximation

as n--> x. (uniformly for:x in a compact set) to estimate i",~_r and r,~_, i'or
large n, we get

Er.s(n) = AUz) A( - iz) C [O(n -2i= - 2r~ 1) + 0(n 2i=- 2, ~ l)] (2,6)

as n --> %, provided rand s are sufficiently large (depending on F).
Finally, to obtain the error estimate given in the theorem for any r, S;:::: O.

consider that for some r' > r, s' > s, (2.6) guarantees

Ers (n) = A(1;;;) A( - iz) C [O(fl -2c - 2r j + 0(n 2ic- 2s)]

and that the difference Ers(n) - Er.s' (n j is 2. finite sum of terms which are
either Tr,Uz) A( -iz) Cn O(n- 2i=-2r) or Tr,( -iz) AUz) c"O(n 2i

c-2'). This
completes the proof.

A.symptotics in the case z = im/2 can be obtained as a limiting case of
(2.5):

64066 1-5
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THEOREM. For integers m, s;;' 0,

P,,( -m2/4) = mi 1 (_l)k (~)\ (n+m-2k) 7rk( -mI2) 7rn _k(m/2)/(m -k),,+ 1

k~O

(_1)ms-l(n)( n )+--I- L k k 7rk(mI2) 7r,,_k( -m/2)
n. k~O m+

x{(n_m_2k),,-mi
k

-
1

( 1 .+ ...
j~k a+m;2+J

+ 1 __1__ 1 )+2}
d + ml2 + j j + 1 m + j + 1

+ 7r",+s( -m/2) C" In nO(n- m- 2s )

as n ---t CA;, uniformly for a, b, c, d in compact sets.

Proof In the previous theorem, put r = s +m and note that the residue
of the term k = m + j (0 ~ j ~ s - 1) of the first sum at z = iml2 cancels the
residue of the term k = j of the second sum. Combining the corresponding
terms and calculating the limit as z ---t im/2 gives the approximation in (2.7).
(The same technique also gives a closed form for the exact value of
P,,( -m2/4).) To estimate the error, apply (2.6) in the previous proof, with
z on a circle of radius s centered at im/2. This gives, for s sufficiently large,

Em +s,,(n) = C" [T(a + iz) rca - iz) ... r(d+ iz) r(d - iz)] -I O(n -m - 2s +28).

By the maximum modulus theorem, the same estimate holds at z = iml2.
The error bound is improved to the one given in the theorem, for all s;;' 0,
by the same technique used at the end of the previous proof.

Note that truncating the first sum of the approximation gives the simpler
formula, for °~ r ~ m - 1,

P,,( -m2/4) = ~~: (_l)k G) (n + m - 2k) 7rk( -mI2) 7r,,_k(m/2)/(m - k),,+ 1

+7rA-m/2)C,,0(nm
-

2
,). (2.8)

Asymptotic expansions in powers of n may be derived by applying
Barnes' expansion

r('Y.+n)_nx+,,-1/2e -n ,,/27r[1 +{31n-1 +{32n-2+ ... ]

as n ---t:x (uniform for :x in compact sets) to the terms of the expansions
(2.5) and (2.7). From (2.5) comes
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+ AUz) en {SII ak( -z) n2i
o-

k + 0(n 2i
O- 5)~ (2.9)

k ~o )

as n -+ x, where ao(z) = 1, ak(z) is a polynomial in a, b, c, d and an analytic
function of z for z =I im/2, and the error bound is uniform on compact sets.
This expansion is analogous to known expansions for the classical poly­
nomials [8, various theorems from Theorem 8.21.3 to Theorem 8.22.7::.
However, the simplicity and accessibility of the general term of (2.5), as
well as the order of the approximation for a given number of terms,
strongly recommend it over (2.9).

In a preliminary version of this paper, we derived (2.9) as well as the
corresponding expansion for Pn( - m 2:'4) by Darboux's method, using the
generating function (2.4). (It was (2.9) which suggested the asymptotic
character of the ,F6 representation).

Darboux's method [7, 8J derives asymptotics for a sequence {c,,} from
information about the behavior of the generating functior. g( It') =
Lf~=O cnwn at the singularities on the circle of convergence. We omit the
derivation of (2.9) but note that to prove the uniformity of the error
bounds in the expansion it was necessary to use a uniform version of
Darboux's theorem:

THEOREM. If g(lV)=L;;:~oCnW" is analytic in {!Irf < I} and, fo!' some
m ;::: 0, the m th derivatil:e g(m)( w) is continuous on {I H'! :s 1}, then as n -+ x­
Cn = 0(/1 -mI. Furthermore, if g(lt') depends on (complex) parameters
ai' ..., Gp , and g!m)(w) is bounded on {Iwj = l} uniformly lrith respect to the
a i' then the estimate O(n -m) is also uniform.

Proof For n ;::: m, 0 < r < 1, Cauchy's theorem says

1 ,. g(m)(w) dw- I = C n(n - 1) ... (n - In + 1I,
2 " ,n - 1"11 + 1 n , , !

nl'I"':~r \1'

In the limit as, r -+ 1-, we get an integral over the unit circle, and the
estimate on Cn is immediate.

The behavior of the generating function (2.4) near the singularity Ii" = 1
was obtained by one of Kummer's relations between solutions of the hyper­
geometric differential equation [3, p. 107. formula (33)], or a limiting
version of that formula in case Z2 = -m2 /4.
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3. POLY"J"OMIAL SERIES

The formulas of the preceding section are basic tools for attacking
problems concerning series L anPn(z2) and their use in approximating
functions. Here we restrict ourselves to some results on regions of
convergence and analyticity of the sums, obtained by comparison with
Dirichlet series L bn n - 2iz.

First, we introduce some notation and recall some facts from the theory
of Dirichlet series. (See [9], for example.) Given a series L:~o an p n(z2), let
a;, = (2n: )3':2 e - 3nn3n + a+ b + c + d- 3':2a1l' The series L:~ 1 a;,n -2iz has an
ordinate of convergence Ye and an ordinate of absolute convergence
Ya,-':X::~Ya~Ye~+:JJ, such that La~n-2iZ converges absolutely for
1m z < Ya' converges conditionally for Ya < 1m z < Yo and diverges with
unbounded partial sums for 1m z> Ye' The convergence is uniform for
1m Z ~ Ye - 8, 8> 0, and the absolute convergence is uniform for 1m Z ~

Ya - 8. An analog of Hadamard's formula for radius of convergence is the set
of inequalities ( - L - 1)/2 ~ Ya ~ Ye ~ - L/2, L = lim SUPn ~ xc log la~ I/log n.

For real nonzero y, let Q(y) be the domain in the z2-plane inside the
parabola with focus °and vertex - y 2

, and understand Q( ±:JJ) to mean
the entire plane. If any of the parameters a, b, c, d has a negative real part,
say Re a < 0, then there are (finitely many) points Z2 = -(a + k)2 with
k ~°and Re (a + k) ~ 0. We denote the set of all such points (considering
all four parameters) by ,1, for "discrete spectrum," since these points are
mass points in an orthogonality relation for {Pn}. If the sum of two
parameters is an integer less than or equal to zero, say a + b = -iV, then
the points -(a + k)2 = -(b + iV - k)2, 0 ~ k ~ iV, are mass points in a
purely discrete orthogonality relation. We denote the set of all such ponts
(considering all six pairs of parameters) by ,1 o.

THEOREM. With the notations just introduced:

(i) ifImz>O and Z2 tf: ,1, then L:~oanPn(z2) converges absolutely,
converges, or has bounded partial sums if and only if L:=o a~n-2iZ does.

(ii) if t > 0, then 'L:~o anPn(t2) converges absolutely, converges, or
has bounded partial sums if both series L:~o a~n±2i' do.

(iii) ifOtf:,1, then L:~oanPn(O) converges absolutely, conrerges, or
has bounded partial sums if and only if 'L:::o a~ In n does.

(iv) if z2 E LI, Z2 tf: ,10' then 'L:=oanPn(z2) com:erges absolutely,
converges, or has bounded partial sums if and only if 'L:= 1 a~n2iZ does.

(v) if Z2E Ao, then Pn(Z2) is zero for all n sufficiently large.

This theorem tells us for example that if Yo the ordinate of convergence
of the Dirichlet series, is positive, then the series 'L:~o an p n (z2) converges
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at all points ;::;2 in Q(yJ and all points of ,1. If )'c:::; 0, then it converges at
all points of L1 0 and points of ,1 exterior to Q()'c)'

Proof In case (i), one of the asymptotic expansions (2.5) or (2..7)
applies. By using enough terms of the expansion we see that a"P,,(z2) =
b"a;,n- 2iz \,,'ith {b"}:~l a sequence of bounded variation. It is also t'."\1;o
then, that la"P,,(z2)1 = Ib"lla~n-2izi and {lb,,1 },~~ 1 has bounded variatioL
Summing by parts establishes that L a"P,,\:;2) converges absc1utely,
converges, or has bounded partial sums if L a;,fl -2i= does.

Now, lim,,~x b,,= A(i;::;) #0, so that {lib,,} also has bounded variatior..
Therefore, the roles of a"P,,(z2) and a;,n- 2iZ may be interchanged in the
summation by parts argument to prove the "only if" part of the assertion.

The proofs of cases (ii), (iii), and (iv) are similar. Case (v) is more
elementary. We may assume that a + c = -cV and a + iz = -j, O:::;j:::; So
Then c - iz = - N + j. In either representation (2.2) or (2.3) for Pa(;::;2;, ".n
terms of the sum vanish if n ;:, N + 1.

THEOREM. If J'c > 0, then the conrergence OfL:~o G"p,,(Z2 J is uniform in
compact sets in Q(yJ. If Ya > 0, then L,~~o lanP"lz 2 )! converges uniformly
on compact sets in Q(Ya)'

Proof Given a compact set K contained in Q(yc), consider a simple
closed curve C in Q(yc) surrounding K and passing through none of !he
points -m2i4. Since (2.5) is uniform for Z2 on C, and the partial sums of
La:,n- 2iz (1m z ;:, 0) are uniformly bounded for Z2 on C, the partial sum­
mation argument used above shows that L a"P,,(z2) converges uniformly
on C. But then by the Cauchy criterion for uniform convergence and the
maximum modulus principle, the convergence is uniform en K. The asser­
tion concerr:ing uniform absolute convergence is proved similarly.

4. THE 4¢J 3 POLY"TO:\1IALS

We list results for the polynomials p ,,( (z + z - 1)/2) in (1.6) analogous to
those for p,,(;::;2). We assume that 0< Iql < 1. The proofs are very similar to
those in the preceding sections.

If q is real, 0 < Iqj < 1, and a, b, c, d are real or, if complex, occur in
conjugate pairs, then P,,(x) is real for real x. If also lai, Ihl, !ci, idi < 1,
then there is a real orthogonality relation

,d

I p,,(x) Pm(X) W(X) dx = bm.nh".
. -I

(4.1 )

There are also purely discrete and mixed orthogality relations with mass
points at (z+z-I)/2=( aqk+ a -lq -k)/2. (See [IJ).
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The representation analogous to (2.2), obtained from (1.6) and Watson's
analogs [2J of Whipple's transformations, is

where

II zqk _ Z-Iqll-k
_ ( . )" (7) (-I) k(lI-kl-q,qllL..,Uk-UII-k Z _ -I q ,

k=O .,;-Z
(4.2)

nk(Z) = (az; qh··· (dz; q)k and

Again, this expansion has an asymptotic character. If z rt {± qlll/2 : mE Z}
and z i= 0 then as n ~ x,

where nk(z) and Uk(Z) are as in (4.2),

and the O-estimates are uniform for z, a, b, c, d in compact sets. In
particular (set r = s = 1)

Pn((z + Z-I )/2) = (a/z; q)n (biz; r::Y/~; q)1I (dlz; qn zn (1 + O(qn))
- ,q n

+ (az; q)n (bz; q)n ~cz; q)1I (dz; q)n Z-II (1 + O( n))
(z-; q)n q

= A(Z-I) zn(l + O(qll)) +A(z) z-n(l + O(qll)). (4.4)
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In the proof of expansion (4.3), the error term is

n-s

= (1- .;:2) A(z) A(Z-I) 0(1) I :qik(n-k) [zln-2k

k=,.

59

(for r, 5 sufficiently large, n --+ x ). The terms of the latter sum are obviously
log convex as a function of k, and the rest of the proof goes as the proDf
of (2.5).

For::: = ±q±m2, m = 0, 1,2, ..., we have the q-versions of (2.7) and (2.8):

PfA ± (qm 2 + q - m2), '2 )

m-l 1- n+m-2k

=(q'q) " u (+q-m2)u (+qm2\ q qk(n-k+l;
, ~ n i...J k - f n-k - J 1 m ~

k~O -q

( _1)m s - 1 [n] [ r l
+~,q;q)nk~O k q m~kJqqm(,,-m+;)'2-kin-m-k+;)

xn (+qm'2'ln (+q-m'2) '(1_ Qn-m-2k)k - n-k - l "
+(1- n_m_2k)n-m~k-l(1+ aqJ+m2 7'"

,q l... - 1 ::j: aaJ - m 2 -
J~k ' ,

dqJ+m 2

± 1 =+= dqJ+m 2

(4.5)

We have used q-binomial coefficient notation:

[:1 = (q; q),,!(q; q)k (q; q)n-k'

If the approximation is truncated after the term k = r - 1 of the first sum,
o~ r ~ m - 1, then the error is n,( ±q-m2) O(q(l-m 2) + rln).

The analogs of representation (2.3) and the generating function (2.4)
appeared in [6], where Darboux's method or termwise limits were used to
derive the major terms in the asymptotic expansion. A convergent complete
asymptotic expansion was derived in [4].

For the q-versions of the polynomial series resulis, define J to be the se!
of points (z + Z-1 )/2 with Izi ~ 1, z = xqk, k ~ O. Yo = a, b, c, or d. Let LID 'oe
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the set of all points (z + Z-I )/2 with z = :xqk = (f3q .Y -k)-l, 0 ~ k ~ iV, where
:x and f3 are any two of the four parameters a, b, c, d. (Ll o is a subset of LI
and is empty unless some pair :"t, f3 has product q-X, n ~ 0.)

THEOREM. With the notation just introduced:

(i) if 1m z > 0 and (z + z-I)/2 fj; LI, then L,~~o anpA(z + Z-I )/2) con­
verges absolutely, converges, or has bounded partial sums if and only if
L:~o anzn does;

(ii) if 0<8<n, then L:~oanPn(cos8) converges absolutely, con­
verges, or has bounded partial sums if both series L,~~o ane±in8 do.

(iii) if Ifj;LI (or alternatively if -1fj;LI), then L:~oanPn(1) (or
L:~oanPn(-I)) concerges absolutely, converges, or has bounded partial
sums if and only if L:~°nan does.

(iv) if(Z+Z-I)j2ELI, and (z+z-I)/2fj;Ll o, then L,~~oanPn«z+z-I)/2)

concerges absolutely, converges, or has bounded partial sums if and only if
L:~o anz- n does.

(v) if (z+z-I)/2ELl o, then Pn«z+z-I)/2) is zero for all n suf­
ficiently large.

According to this theorem, if L anzn has radius of convergence p> 1,
then LanPn«z+z-t)/2) converges at all points (z+z-I)/2 in Ep , the
ellipse with foci ±1 and vertices ± (p + P-I )/2, and at all points of LI. If
p ~ 1, then it converges at all points of LI exterior to E p as well as at all
points of LI o.

THEORHf. if L a,zZn has radius of convergence p> 1, then
L lanPn«z+z-I)/2)1 converges uniformly on compact sets in Ep •
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